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SUMMARY 

The migration of a high-concentration, multi-component band in chromato- 
graphy is a particular case of the reaction-diffusion processes. The various approaches 
to the solution of the system of partial differential equations obtained are review-ed for 
the cases of a pure compound and of a binary mixture. Particular emphasis is placed an 
the derivation of accurate, meaningful results while minimizing the amount of 
experimental work required for the determination of the parameters needed for the 
prediction of the band profiles. From this point of view, the simple wave theorem is 
important, as it offers an attractive approach for the determination of competitive 
equilibrium isotherms. 

INTRODUCTION 

This paper reviews the results of an investigation of the fundamentals of 
chromatography at high concentration, when large sample pulses are injected in 
a mobile phase of constant or slowly changing composition (isocratic or gradient 
elution modes) or in a mobile phase containing additives which are about as strongly 
retained as the components of the sample (system peaks), when these pulses are 
injected in front of a wide plug of a solution of a strongly retained compbund 
(displacement) or when a step of a concentrated solution is rapidly introduced into the 
column (frontal analysis). Although most of the results discussed here apply to all 
retention mechanisms used in chromatography, most of the examples are taken from 
adsorption chromatography. Some applications, however, may require a modified 
approach, such as some forms of ion chromatography, for which a charge balance 
equation is needed to maintain electrical neutrality of the elementary column slice. 
Finally, although our investigation is mainly relevant to the modern, high-perfor- 
mance implementations of chromatography, it also applies to situations where the 
kinetics of mass transfers between phases or the kinetics of the retention mechanisms 
are slow, as we consider near-equilibrium models only as a special case of the kinetic 
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models which can account for all experimental conditions under which chromato- 
graphy rakes place. 

Analytical chromatography 
The classical theoretical investigations of chromatography have been carried out 

essentially for the purpose of understanding the behavior of columns used for 
analytical applications’. They have been developed within the framework of the signal 
theory. The results of these studies permit the prediction of the moments of 
a compound band, and hence its position (retention data), its noise (here, the band 
width), its asymmetry, the ratio of the band position to its noise (in chromatographic 
terms the column efficiency) and the resolution between two closely eluted bands (the 
Rayleigh coefficient). They describe the influence of the experimental conditions on 
these various parameters, permit the optimization of the column resolution or of the 
analysis time and the use of the chromatographic data for qualitative and quantitative 
analysis. These predictions are made from independent physico-chemical data 
regarding the thermodynamics and kinetics of the equilibrium involved in the 
chromatographic process (Henry equilibrium constant, molecular diffusion coeffi- 
cient, rate constants, etc.)‘,‘. Fundamentally, the classical theory of chromatography 
provides the same information and satisfies the same needs as the similar theories of 
spectroscopic methods. 

Experimentally, it is observed that, under classical analytical conditions (small 
sample amount), the chromatographic signal is nearly symmetrical and its position 
and width are essentially independent of the sample size. In agreement with theory, the 
characteristics of the band can be expressed by and summarized in the first few 
moments1-4, i.e., the zeroth moment, which characterizes the amount of material 
injected, the first moment, which is a definition of the retention time, and the second 
centered moment, related to the column efficiency (through the height equivalent to 
a theoretical plate). In practice, these first three moments are sufficient to characterize 
the profile of elution bands in analytical chromatography. Deviations from a symmet- 
rical profile can be measured by the third (asymmetry) and fourth (excess) centered 
moments3.4. As the main purpose is analytical and since extremely sensitive detectors 
are available, minute amounts of samples are injected, the chromatographic process is 
linear and the characteristics of the bands of the different components of a mixture are 
independent of each other and of the sample size. This makes qualitative analysis by 
chromatography a viable proposition. 

Mathematically, such phenomena can be modeled using linear differential 
equations, obtained by writing the mass balance of each component of the sample in 
a column slicei~5. Multi-component problems are easy to solve, because they are 
uncoupled. The superposition principle holds and the resolution analysis can be 
directly derived from the similar analysis of the behavior of single-component 
processes. This makes the optimization of the analysis time for the complete separation 
of a mixture a fairly simple investigation. The proper model is represented by the set of 
linear partial differential equations for each single compound and the method to solve 
this model is the Laplace transform followed by moment analysis. 

Preparative (non-linear) chromatography 
The purpose of preparative chromatography is different from that of analysis6v7. 
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Signal information is less important than the preparation of purified products. 
Although signal information parameters characterizing retention and the separation 
between bands are still valuable information for the separation scientist, during the 
development of a new method, the critical factor is the production rate at a certain 
purity. 

Experimentally, samples with a very large amount and volume have to be 
considered. The amount of material injected into a column with respect to unit 
cross-sectional area exceeds by one or several orders of magnitude that conventionally 
used with analytical columns. The injection of these amounts cannot be done 
instantaneously. In a number of instances, for solubility reasons, the sample must be 
diluted in a volume of mobile phase or solvent which is large with respect to the elution 
band volume of a non-retained compound. It is rare, however, that the process can be 
considered as linear. 

Theoretically, as the concentrations of the bands in the column are high and the 
volumes injected are large, the multi-component problem cannot be tackled as in 
analytical chromatography. The mass balance equation for a single component is 
a non-linear partial differential equation for which there is no general analytical 
solution5,*. An analytical solution is possible only in some special cases, or with some 
simplifying assumptions which are valid only in particular cases (very small degree of 
overload, column of infinite efficiency, etc.) i,5*g*10. Further, in the case of a multi- 
component sample, the principle of superposition no longer applies. The system of 
non-linear partial differential equations which corresponds to such problems is 
coupled, because the equilibrium isotherms or the retention kinetics of each 
component depend on the concentration of all the components of the system1 ‘. This 
makes the solution of a multi-component problem all the more difftcult to obtain. 

Overview of the history of non-linear chromatographic theory 
The theory of non-linear chromatography has developed slowly over the years. 

Wilson’ was the first to discuss the mass balance equation for a single compound and 
understood the difficulties arising from the existence of a velocity associated with each 
concentration and of the concentration dependence of this velocity. Be Vault” 
recognized the possibility of the formation and propagation of concentration 
discontinuities in the ideal model. Weissi3, Walteri and Glueckauf l1 published 
important papers discussing the solution of the system of mass balance equations of 
chromatography for a pure compound, using the ideal model (i.e., assuming an 
infinitely efficient column). Thomas ’ 5 and Goldstein16 gave an analytical solution for 
the band profile of a pure compound, using a kinetic model, with Langmuir kinetics of 
adsorption-desorption. Thic solution was recently used successfully by Wade et al.” 
to account for band profiles obtained in affinity chromatography. Rhee et aL1* and 
Guiochon and Jacobi’ developed the application of the characteristic theory to the 
solution of the ideal model and calculated elution profiles and breakthrough curves 
using computer programs. Houghton2’ and Yeroshenkova et aL21 derived an 
approximate analytical solution valid at low concentrations, when the band broaden- 
ing effect of the non-linear behavior of the isotherm is still small compared with the 
contributions of the axial dispersion and the kinetics of radial mass transfers. Recently, 
numerical solutions easy to implement have been described, which permit the 
calculation of the elution profile of large samples of pure compounds, knowing their 
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equilibrium isotherm and the column efficiency *. The experimental results are in 
excellent agreement with the results of these theoretical calculations22323. An 
analytical solution has been derived in the case of a Langmuir isothermg. 

The multi-component problem was investigated very early, but progress has 
been very slow. Glueckauf 24 gave an incomplete analytical solution of the ideal model 
for a binary mixture with a Langmuir competitive isotherm. Aris and Amundson2’ 
and Rhee and co-workers26-30 published an excellent discussion of the Riemann 
problem (i.e., frontal analysis) in this case. A discussion of the pulse problems has been 

31 reported recently . Helfferich and Klein32 derived, within the framework of the ideal 
model, distance-time diagrams which may be used to describe the migration and 
progressive separation of a multi-component band. Their method, based on the use of 
the h-transform, is difficult and has never been extended to the case of real columns 
with a finite efficiency. The first numerical solution was described by Guiochon and 
Jacoblg, but it was not entirely satisfactory (because of truncation errors the procedure 
was not mass conservative33) and a systematic investigation of the effects of the 
competition between the components of a mixture was made only recently34. The 
optimization of the experimental conditions for the preparation of one of the 
components of a binary mixture has been discussed by Knox and Pyper6, Cox and 
Snyder , 35 Katti and Guiochon 36 Ghodbane and Guiochon3’ and Golshan-Shirazi , 
and Guiochon38,39. 

After a slow beginning, the theory of non-linear chromatography has developed 
rapidly during the last few years, under the pressure resulting from the needs of the 
biotechnologies for powerful purification processes which can be applied to molecules 
very sensitive to degradation. These advances have been allowed by progress made in 
pure and applied mathematics. 

The purpose of this work was the investigation of some new approaches to this 
theory and a disussion of their most salient results. We especially discuss the computer 
simulation of the migration and separation of chromatographic bands, the influence of 
the non-linear behavior of the isotherm, of the axial dispersion and of the coefficients 
of resistance to radial mass transfers and of the truncation errors. Finally, we present 
some new results, using the simple wave theory. 

MATHEMATICAL MODEL OF NON-LINEAR LIQUID CHROMATOGRAPHY 

The dynamic process which takes place in chromatography is the same as that 
which occurs in the flow bed reactor discussed in chemical engineering4’. It is 
a convection-diffusion mass transfer process, which is mass conservative. There is no 
chemical reaction in the chromatograph, so the mass of each compound involved is 
conserved. The process of adsorption-desorption or more generally the retention 
process can be considered, however, as a generalized reaction. Therefore, the 
chromatographic process is a particular case of reaction-diffusion processes40-42. 
From a microscopic viewpoint, the process is stochastic. The molecules move at 
random along the column, according to a certain probability distribution. The 
mathematical model which applies is the Fokker-Planck equation43, the solution of 
which is the probability distribution of the residence times of the molecules of the 
sample. 

We discuss in this section the general properties of the relevant equations in the 
case of chromatography. 
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Reaction-diffision equations 
The reaction-diffusion equation can be written as follows, in the case of 

a multi-component problem: 

where i = 1, 2, ..,, represents the different components of the.mixture studied, the 
coefficients vi, v2, . . . , represent the different phases contained in the system used, Cyi is 
the concentration of compound i in phase Vi, u. is the mobile phase velocity, D is the 
diffusion coefficient and q is the reaction rate function. 

In chromatography, it is convenient to distinguish three phases. instead of the 
conventional two phases. These three phases are the flowing mobile phase. v, = nr, 
which occupies the volume between the packing particles, the stagnant mobile phase, 
v2 = p, which is contained in the packing particle pores and exchanges freely with the 
flowing mobile phase (although in some cases, such as in size exclusion chromato- 
graphy, it may have different physical properties), and the stationary phase, vj = S. 
Further, it is usually assumed that 261 = 0: = 0, that up = 0, that UT = uo, as the 
stagnant mobile phase does not move, and that 07 = D is different from Dp, because 
of the difference in geometry and structure between the inter-particle and the 
extra-particle porosities. 

In adsorption chromatography, the reaction involved in the retention mecha- 
nism is adsorptiondesorption. Two possible models can be derived from eqn. 1, 
depending on whether we neglect or not the mass transfer processes in the pores of the 
column packing material. 

Mass tran.Cfers proceed in the pores as fast as in the hulk. If the contribution of the 
mass transfer processes across pores to the equilibration kinetics is neglected, as a first 
approximation, we may write 

In almost all applications of chromatography, whether analytical or preparative, the 
kinetics is fast and the system is always close to equilibrium, although never at 
equilibrium except in one point at a given time. Accordingly, we may write the reaction 
rate function as 

qr = FKi [Cf - fi (CT> CT, . . e)] (3) 

where Ki is the mass transfer coefficient for component i and F is the phase ratio. In 
liquid chromatography, we can neglect the sorption effect, since the molar volumes of 
the sample components are very nearly the same in both phases44*45. Unlike in 
gas-liquid, gas-solid and liquid-liquid chromatography, in liquid-solid chromato- 
graphy the boundary between the mobile and the stationary phases is fuzzy. The 
definitions of the volume occupied by the stationary phase and of the mobile phase 
hold-up time (to) and volume are unclear. Riedo and Kovats4’ gave a detailed 
discussion of this problem. They showed that the retention in liquid-solid adsorption 
chromatography can be described in terms of Gibbs excess free energies and 
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adsorption processes. It is not possible to define properly the surface concentration of 
the adsorbate without defining first a convention concerning the adsorption equilib- 
rium45*46. The most convenient convention in liquid chromatography is to assume 
that the mobile phase, if it is pure, or the weak solvent, if the mobile phase is a mixture 
or contains additive(s), is not adsorbed. The mass balance of the weak solvent is then 
an identity, but all adsorption isotherms must be reported with the same convention. 

Hence, the flow velocity of the mobile phase may be considered as constant and, 
in the case of near-equilibrium chromatography, the reaction+liffusion equation 
system for a binary mixture becomes: 

~ = -K1 EC”, - fi cc;“, GY at 

acg 
at + u'o . ocy = DV2CT + 

acs, 
- = --K2[G -f2(CT, ml 
dt 

(5) 

(7) 

When Ki + 00, the process tends towards an equilibrium one. Then the concentration 
of each compound in the stationary phase is related to the mobile phase composition 
through the equation 

Cf = q = ,fi (CY, CT) (8) 

which is referred to as the equilibrium isotherm. In this case, X:/at = afJ&, and 
eqns. 4 and 6 become 

!!$8+F~+jJo. OCY = DU'CF i = 1,2 

Mass transfers proceed at dzyferent rates in the pores and in the bulk. I-& eqn. 1 
should be written for the three phases that we must consider (flowing and stagnant 
mobile phases and stationary phase). We obtain 

acy 
at + 30 . UC? = DU2Cy + Kp,,JCf'Ir=~, - (?“I] (10) 

(11) 

and 

acf 
at - KpIf(CP) - c;] (12) 
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where KP,,, is the kinetic coefficient for mass transfers between the outside and the 
inside of the pore space, and I&, is the coefficient for mass transfers between the pores 
and the stationary phase (i.e., the sorbed layer); UP = 0, as the mobile phase is stagnant, 
and D, is different from 0, but usually smaller than D,. We also have in eqn. 11 

(13) 

where Y is the radius of the pores in the packing particles. 
As the mass of each chemical species is conserved during the separation process, 

we have 

a(C + FCf’+ FC,“) + 

dt 

~ 
0. VCY = DV2Cy (14) 

From eqns. 10, 14 and 11, we may write 

Kpm [Gl ,=R, - Cr] = -FD,O;Cf (15) 

As the pores of the packing particles vary widely in size, we prefer to average eqn. 15, 
which gives 

R 

Kpm(G’lr=~, -q)= -F s D,V;Cffl.4rrr2dr 
4~ R:: 3Dpj3 acp 
3= -p.p 

RI ar (16) 
0 R I 

where /I is the packing porosity (i.e., the internal porosity). 
Eqns. lo-12 and 16 are those used for modeling the chromatographic separation 

of a mixture when mass transfers through pores are taken into account43. 

The ideal model of chromatography 
If the mass transfer processes inside the pores can be neglected, the chromato- 

graphic column is operated at a high velocity and the extent ofaxial dispersion is small, 
so D is small, while K is large. Thus eqn. 9 becomes, in the case of a single compound 

(17) 

Eqn. 17 is the classical hyperbolic conservation law 47 . It is known in mathematics in its 
canonical form 

JQ (0 
at 

+g=o (18) 

where Q(C) = (C + Ff)/uo. 
Lax4’ published a series of landmark papers discussing the hyperbolic conserva- 
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tion problem in the 1950s. This problem is closely related:to the shock theory and is of 
critical importance for the understanding of the behavior of supersonic aircraft and of 
nuclear explosions. This problem was given considerable attention at the end of World 
War II and its investigation lead to the book by Courant and Friedrich”* and, later, to 
the papers published by Lax. This later work includes a classical, analytical discussion 
of the problem in terms of characteristics and functional analysis, and succeeded in 
deriving a solution of eqn. 18, when Q (C) is a convex function25. The paper also 
includes a detailed investigation of the conditions under which the numerical 
calculation of solutions of eqn. 18 can be performed with a computer, and the shock 
can still be correctly described. 

Aris and Amundson2’ showed that the propagation of a continuous concentra- 
tion profile through a chromatographic column can be considered as the result of the 
propagation of each concentration along a straight line of slope U, = u/( 1 + dfldC), 
going through the corresponding point of the injection profile. This line is called 
a characteristic and the velocity U, associated with a concentration, the characteristic 
velocity. When two characteristic lines intersect, however, no regular solution of 
eqn. 17 can exist. A weak solution can be defmed25p47, and a concentration 
discontinuity or shock takes place. The properties of these shocks in chromatography 
have been recently discussedr’. 

In the case of a binary mixture, the ideal model gives the following two 
equations: 

and 

(19) 

(20) 

These equations make the classical system of reducible quasi-linear partial differential 
equations of chromatography . 25 Their most important property is that the following 
relationship between the characteristic velocity of each component holds3’: 

where 

(22) 

and 

W-2 ah dC1 af2 

DC2 
-=ac+dC.,dC 

2 2 1 
123) 
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In non-linear, high-performance liquid chromatography (HPLC), the elution band 
profiles are determined essentially by eqn. 18 for a single compound, or by eqns. 19 and 
20 for a binary mixture. The solutions of these equations contain self-sharpening parts 
(fronts or tails, depending on the sign of the isotherm curvature) and continuous parts. 
It involves an interaction term in the overlapping region of the band, where both 
components are present. The profile of each component ends abruptly in one point, as 
there is no axial dispersion. 

In most practical cases of interest in HPLC, the molecular diffusion coefficient of 
the eluates, D,, is of the order of 1 . low5 cm’/s and the axial dispersion is of the order 
of 1 10m4 cm”/s. For low-molecular-weight compounds, the mass transfer coefficient, 
K, is very large and in most instances, when the diffusion process in the pores is fast, the 
non-linear behavior of the equilibrium isotherm is the essential factor controlling the 
band profiles at high concentrations. Accordingly, the solutions of eqns. 18, 19 and 20 
are an excellent approximation of the elution band profiless-‘O. When these 
assumptions no longer hold, when the dispersion coefficient becomes large (e.,g.. with 
columns packed with large particle material), and/or when the mass transfer coefti- 
cient becomes small (e.g., with high-molecular-weight compounds, such as proteins), 
the experimental band profile deviates markedly from the solution of the equation(s) 
of the ideal model. The extent of this deviation can be estimated by using the singular 
perturbation method (see below). A more accurate estimate is afforded by computer- 
calculated numerical solutions, especially at large sample sizes, i.e., when the 
contribution of the non-linear behavior of the isotherm to the band profile is 
importants. These methods permit the determination of profiles in satisfactory 
agreement with experimental results* 2,2 3. Qualitatively, the effects of a large diffusion 
coefficient or a small mass transfer coefficient are similar; they contribute to 
a dispersion term and dampen the self-sharpening process due to the non-linearity of 
the isotherm49. 

When the sample size is small and the solute concentrations in the mobile phase 
are low, the isotherm is nearly, but not quite, linear. The non-linear contribution of the 
isotherm to the band profile is moderate or small compared with the classical 
phenomena resulting in band spreading (axial dispersion and resistances to radial mass 
transfer). The thermodynamic effect can then be treated as a perturbation or as 
a minor contribution. 

These two approaches are discussed in the next section. 

Approximate solution in the case of a weakly non-linear behavior 
When the contribution of the non-linear behavior of the isotherm to the band 

profile is small compared with that of the kinetic terms which control normally the 
band width at the low sample sizes used in analytical chromatography, a perturbation 
method can be used5’. 

The isotherm can be approximated by its two-term expansion at the origin: 

f(C) = GC + G'C= (24) 

or, in the case of a binary mixture, 

f’(C,, C2) = GICI + GIIC: + G12C1G (25) 



For example, if the actual isotherm is Langmuir: 

f(C) = $& 
or, for a binary mixture 

f;:(Cl, . . . . Ci, . ..) = 1 +GgL,c, i= 1,2 
I 1 

B. LIN et al. 

(27) 

The coefficients of eqns. 2426 are related to those of eqns. 27 and 2X by G’ = - Gb, 
GI1 = -GIbI, GIz = -GIbz, Gzz = -Gzbz and Gzl = -G2bl. 

As the deviation of the isotherm is small in the concentration range investigated, 
the perturbation method permits the derivation of an approximate solution. which is 
calculated as a correction to the linear solution due to that non-linear behavior50,51. 
We write 

Ci = Cp + Cf (29) 

where CF is the solution corresponding to the linear isotherm and C; is the 
perturbation solution. In the case of a single component, we can use the linear driving 
force kinetic model (eqns. 4 and 5), which is a convenient tirst-order approximation 
when the mass transfer kinetics are fast, but not infinitely so. Writing eqn. 5 as C, = 
f(C) - l/Kaf(C)/at, we obtain 

d2C’ 
(1 +FG)$+u~.+.~= FGb-$+$.s (30) 

where K is a lumped mass transfer coefficient. Eqn. 30 is a linear non-homogeneous 
first-order partial differential equation. The Green function method can be used to 
solve it, as discussed in a previous publication”. 

In the case of the two components of a binary mixture, and within the framework 
of the ideal model (i.e., assuming the mass transfer kinetics to be infinitely fast and 
neglecting the axial dispersion), the perturbation equations can be written as 

(1 +FG~)~+uo-~=(2FG~b~C~+FGIb&)~+FG,b,CY.~ (31) 

and 

(1 + FGz)2+ uo$$= (2FGzb&‘+ FG,b,Cf)z+ FG,b,C;.$ (32) 



THEORETICAL ANALYSIS OF NON-LINEAR PREPARATIVE LC 195 

Eqns. 31 and 32 make a system of linear, non-homogeneous, first-order partial 
differential equations . ” This system cannot be solved analytically, but the Laplace 
transform can be used to derive the value of the moments of the perturbed bands. 
Thus, the variation of the retention time with increasing sample size can be calculated 
at the onset of the column overload. The results are discussed in a separate 
publication’r. 

The approximation of the Burgers equation 
When the concentration of the eluite is small, but is not negligible, the results of 

the previous, perturbation method are no longer satisfactory and a more sophisticated 
approach becomes necessary to introduce the effect of the non-linear behavior of the 
isotherm in the partial differential equation(s) giving the eluite concentration profile. 
The equilibrium isotherm can still be represented by eqn. 24, however, because the 
concentration still remains low enough. 

In this instance, and if diffusion cannot be ignored, using a variable transform 
and some approximations, Houghton ‘O has shown that, in the case of a single 
component, the chromatography equation can be put under the form of a Burgers 
equation: 

(33) 

where t is a function of X, t. Eqn. 33 can be solved analytically, using the Cole-Hopf 
transform. When the axial dispersion coefficient, D, decreases and approaches zero, 
the profile predicted by eqn. 33 for the elution profile of a single compound becomes 
steeper and steeper and tends towards a concentration shock”. 

Yeroshenkova et aE.” and Jaulmes and co-workers44*52 have also discussed the 
transformation of the chromatography equation into a Burgers equation and the 
properties of the solutions of the latter. 

The singular perturbation method 
If the non-linear behavior of the band migration process becomes strong, and 

self-sharpening of one side of the elution profiles takes place, an approximate solution 
can be searched for by adopting the position opposite to that taken in the previous two 
sections (i.e., perturbation method and Burgers equation approximation). Instead of 
considering the non-linear effect of thermodynamic origin as a small perturbation of 
the linear model, we shall consider the dispersion of kinetic origin as a small 
perturbation of the ideal model. The small amount of dispersion smoothing out the 
band profiles predicted by the ideal model can be accounted for as a correction, using 
the singular perturbation method. This method is a modification of the discontinuous 
solution, i.e., explains the replacement of the shocks predicted by the ideal model by 
shock layers, which have a finite width, but propagate at almost the same velocity as 
a concentration discontinuity. 

Goldstein and Murry53 used this method to account for the effect of the mass 
transfer kinetics on the band m-ofiles. 
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The stochastic model 
The chromatographic process is molecular in nature. At the microscopic level, it 

is a stochastic process which can be described, e.g., by the Fokker-Planck equation43. 
The determination of an associated deterministic model permits the calculation of 
average data, using the classical procedures of the stochastic theory. A discussion of 
the mechanism of adsorption-desorption as a stochastic process was published long 
ago by McQuarrie . 54 More recently, Yeroshenkova et a1.55 investigated the effects of 
the lack of homogeneity of the packing on the column performance. 

These last workers derived the following equation relating the packing 
characteristics: 

(34) 

where E, is the packing porosity, ,ucLLo the column volume fraction available to the mobile 
phase, w E Dare the realizations of the possible irregular distributions of the packing in 
the column which are present in the column and D represents the total number of 
irregular packing distribution which would be made if an infinite number of columns 
were successively packed; w is the mobile phase velocity and X, t the space and time, 
respectively. This stochastic model can be reduced to a deterministic one55. 

The use of the stochastic model could constitute an alternative approach to the 
study of band profiles and band separation in non-linear chromatography, much as 
the Monte-Carlo method has been used for the investigation of field flow fractiona- 
tion56. 

THEORETICAL ANALYSIS OF SINGLE-COMPONENT NON-LINEAR LIQUID CHROMATO- 

GRAPHY 

Although results of practical importance can be derived only from the solution 
of a two-component problem, as chromatography is a separation process, the solution 
of the single compound problem, i.e., the accurate prediction of the elution profiles of 
a rectangular pulse and of the steps injected in frontal analysis is a useful intermediate. 
From a mathematical point of view, it is a much simpler exercise, because there is only 
one partial differential equation in the latter case, versus two coupled equations in the 
former. Solutions will be searched first for the single-component problem. In a second 
step, attempts will be made to extend them to the multi-component problem. 

Simulation of the non-linear main part 
As mentioned above, when the mass transfer coefficient is very large, the 

chromatographic behavior and the elution band profile are determined by the main, 
non-linear part of the model, i.e., the equilibrium isotherm. Accordingly, the solution 
of eqn. 18 becomes of critical importance. 

As shown by the theory of characteristics, each concentration of the injected 
profile moves on an associated trajectory which in the case of eqn. 18 is a straight line, 
with a slope u,(C) in an x, t plane 10,18*1g. These straight lines arecalled characteristics. 
There are two limitations to that statement, however, First, this is possible only as long 
as the characteristics corresponding to different concentrations on one side of the 
profile do not intersect. As U, = uo/( 1 + FaflK), as long as the isotherm is not linear 
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there will be parts of the injection profiles whose characteristics will intersectlO~lg. As 
has been shown, a stable concentration discontinuity or shock forms and propa- 
gates”. The second limitation is that the band spreads because its front moves faster 
than its taili and the continuous part interacts with the shock and erodes it19y3’. 
Hence the maximum concentration decreases constantly and the band profile cannot 
be described completely if this interaction is not properly taken into account”. 

Analytical and numerical solutions can be obtained for eqn. 18. The former are 
discussed in the next section 9. Numerical calculations can be performed with 
a computer. using first- or second-order difference methods’. Tn practice, the 
first-order, characteristic method is easy to program and gives stable solutions, which 
have been shown to converge towards the exact solution of eqn. 18 when the 
integration increments become infinitely small 58*59. The Lax-Wendroff, second-order 
method provides a better accuracy, is more flexible, but much more delicate to 
handle6*T61. With this method, the error caused by numerical dispersion is cancelled in 
the linear case and markedly reduced in the non-linear case, but numerical instabilities, 
i.e., oscillations, may take place easily at low values of the axial dispersion coefficient 
and low values of the time and space increments (see the last section). These spurious 
artefacts can be avoided only by a careful choice of the values of these increments. 

Excellent simulations have been obtained, however, and their results agree well 
with the corresponding experimental results8~22~23~62. 

Retention time under conditions of shock formation 
The retention time of the elution band of a pure compound can be derived from 

previous results published by Aris and Amundson 25 The details of the derivation have 
been published in the case of a Langmuir isotherm, and it has been shown that there is 
excellent agreement between the predicted and the experimental valuesgg62. This is due 
to the fact that, in actual columns, which have a finite efficiency, the shock predicted by 
the ideal model is replaced by a shock layer 1o*63 The shock layer has a finite thickness, . 
which increases with increasing column HETP, but propagates at almost exactly the 
same speed as the concentration shock63. We present here a brief discussion of the 
solution and a general analysis of the problemlO. We assume that the sample is injected 
as a rectangular pulse of mass m, width t, and concentration Co, 

We can transform eqn. 17 into 

ac 
dt+ 

UO .ac 0 -= 
l+F.f ax 

ac 

It is known that the shock velocity is given by1o,1g 

In eqn. 36, C is the concentration of the compound in the mobile phase at the shock 
maximum and f the corresponding value of the isotherm. i.e.. the equilibrium 
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concentration in the stationary phase. Whenfis convex, the shock takes place on the 
front of the band profile. Thus, the retention time is the elution time of the shock itself. 
The migration trajectory of the shock is obtained by integration of eqn. 36. However, 
we have first to derive a relationship between the concentration of the shock maximum 
and its position, which describes the constant erosion of the shock during its migration. 

The rear side of the band is continuous, as the characteristics associated to each 
point of this part of the profile diverge like a fan. The velocity associated to 
a concentration on this part of the profile is given by 

UO 
24, = 

l+I;.lf ac 
(37) 

At the shock maximum, the continuous part of the profile meets the shock. Both parts 
of the profile have the same concentration, C Ms and they are at the same location, i.e., 
x$ = x,. Since the concentration CM on the continuous part of the profile moves at 
a constant velocity, given by eqn. 37, we have 

x, = u,(t - tp) (38) 

However, as the concentration CM is also moving with the shock, its velocity at the time 
considered is given by eqn. 36. Transforming eqns. 36 and 38”, we obtain 

(39) 

and 

t-+-X 
UO =pdf 

X dC - 
UO 

(40) 

respectively. In eqns. 39 and 40, x is the location of the shock at time t. The function 
x(t) in this system of differential equations is the trajectory of the shock. Its solution 
will give the shock retention time, i.e., the time corresponding to the abscissa L. The 
integration of this set of differential equations can be carried out easily if df/dC is 
function of f/Cl’. If we have 

(41) 
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we can write 

,(,-t,-;) = 9_’ 

dX 
0 260 

(42) 

Eqn. 42 is a homogeneous differential equation, whose well known solution is 

d[(f-t6-j :‘;I ln(3 = /+-l,(t_tF_;) /;]_[(t_fp_2&.) I;] + constant PI31 

Eqn. 43, in turn, cannot be integrated for any possible form of $-I(.), but only in some 
special cases. 

The function +( .), when it exists, is derived from the isotherm. There are a few 
cases of isotherms for which eqn. 43 can be integrated. For example, when + has the 
following form: 

VW = r (44) 

where n is an integer, hence 

(45) 

it is possible to integrate eqn. 43 and derive a relationship between x, t and n. 
Combining eqns. 43 and 44 gives 

i = A.ln[ 1 -r-L”)‘-‘] + constant (46) 

In the case when n = 1, which corresponds to a linear isotherm (i.e.,f = constant C), 
eqn. 46 becomes 

tr = t, + to(l + constant) (47) 

Eqn. 47 is the classical equation relating the retention time to the slope of a linear 
isotherm. 

In the particular case of n = 2, which corresponds to the Langmuir isotherm 
[q = aC/(l + BC)], eqn. 46 becomes 

Jzt-E=constant 
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In this case, the retention time is given by 

t, = t,[l + ,(l - $$$] (49) 

where C0 is the concentration of the injected pulse (i.e., COtgu is the mass of 
compound injected). For an anti-Langmuir or for the beginning part of an S-shaped 
isotherm,fis concave. The front part of the band profile is continuous because, in this 
case, the velocity associated to a concentration decreases with increasing conccntra- 
tion and the characteristics lines fan out. A shock forms on the rear part of the profile, 
however, and for the same reason. If we assume that the Langmuir equation (eqn. 27). 
with negative 6, still accounts correctly for experimental data (note that the model can 
be only empirical in such a case, but may still hold in some concentration range), the 
same procedure as used above leads to the following equation for the retention time of 
the rear shock: 

t, = t,[l + ,(l + JZ)J (50) 

In this case, b < 0. Comparison between eqns. 47,49 and 50 shows that when b > 0, the 
retention time is smaller than in the case of a linear isotherm and decreases with 
increasing sample size, whereas for b < 0 the opposite is true. This result is consistent 
with that derived from the perturbation analysis, which is valid only at low 
concentrations50. 

The continuous part of the profile can be determined knowing the dependence of 
the velocity associated with a concentration, given by eqn. 37 and the isotherm. As the 
velocity associated with a given value, C, of the concentration is constant throughout 
the column. the retention time of that concentration C is 

tc = t, + L/u, = tp + t,(1 + F-g) 

Hence the profile is entirely determined by the two equations giving the retention time 
of the shock and the retention time of the concentrations of the continuous part of the 
profile. This part of the profile is bound at one end by the retention time of the shock 
and at the other end by the time corresponding to a zero concentration, i.e., the 
retention time associated with a linear isothermg,iO. 

Coupling between the thermodynamic and kinetic effects 
In the case of a single component, the influence on the band profile of the mass 

transfer coefficient, K, of the diffusion coefficient, D, and of the contribution of the 
lack of packing homogeneity are similar. In the case of a non-linear isotherm, both 
mass transfer kinetics and axial dispersion contribute to the broadening of the band 
profile and to the increase of the thickness of the shock layer61. 

A most important practical problem to discuss now is the extent to which the 
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axial dispersion term affects the concentration shock predicted by the ideal model. 
A concentration discontinuity takes- place over a distance shorter than a molecular 
diameter, which is not a very realistic picture. In fact, such a shock constitutes an 
infinite concentration gradient over a finite concentration range. The corresponding 
diffusion mass flux would be infinite. A steady-state, dynamic balance must take place 
between the thermodynamic effect which creates the gradient and the axial dispersion 
which smooths it out. If the axial dispersion is small enough, the shock is replaced by 
a shock layer10s63. This is what takes place in most practical cases in preparative 
chromatography. 

In a shock layer, all the concentrations of the part of the profile involved have the 
same velocity which, for all practical purposes, is equal to the shock velocity63. Rhee 
and co-workers have published a detailed discussion of the application of the shock 
layer theory to the determination of the breakthrough curve (frontal analysis profiles) 
for the single-compound26-z8 and two-component problems2’. However, it seems 
difficult to extend their analysis to the solution of the pulse injection problem. Thus, an 
analytical discussion of the properties of the shock layers in elution chromatography 
has not yet been successfully achieved. 

Numerical simulations show that, when the mass transfer coefficient is large, the 
thickness of the shock layer increases with increasing axial dispersion coefticient63. At 
low values of the axial dispersion coefficient, the shock layer is very thin and its 
thickness is proportional to this coefficient. The deviation between the retention time 
observed and the value predicted by eqn. 49 is of the same order of magnitude as the 
shock layer thickness 60,61 This deviation, and also the thickness of the shock layer, . 
tend towards zero with decreasing value of the dispersion coefficient. When the 
dispersion coefficient increases, on the other hand, the shock smooths and then 
disperses at large values of D. In liquid chromatography, the molecular diffusion 
coefficient is small, usually of the order of 1 * low5 cm’/s, whereas the axial dispersion 
coefficient (i.e., the ratio h,d&/2to, where h, is the sum (B/v) f M/3 of the first two 
terms of the classical Knox plate-height equation6’, v = z&,/D, is the reduced velocity 
and dp is the average particle size of the packing material used) is of the order of 1. 10m4 
cm’/s. With a Langmuir equilibrium isotherm, if the axial dispersion coefficient is 
increased from a very small to a very high value, the retention time first increases, then 
goes through a maximum for some intermediate value and eventually decreases 
towards to. 

Similarly, the mass transfer coefficient has an effect on the band profile and, 
depending on its value, may considerably modify the band profile predicted by the 
ideal mode165,66. For example, if this coefficient is zero, the band moves at the same 
velocity, u. = L/t,, as non-retained compound bands, and, whatever the amount 
injected, is eluted as a symmetrical band, at t, = to = L/uo. When the mass transfer 
coefficient, K, increases, the retention time increases monotonically, from to to t, = 
to(l + FG), in the case of a linear isotherm 4g,65,66. If the isotherm is not linear, the 
effect is the same as in the linear case at very small values. of the mass transfer 
coefficient. However, I/K, which is the resistance to radial mass transfer, acts as 
a smoothing factor and permits the coupling between the kinetic effects and the 
non-linear thermodynamic effect. For a given isotherm, the intensity of the self- 
sharpening of the band increases with increasing value of the mass transfer coefficient, 
because the-smoothing er”fect of a siow mass transfer kinetics decreases. ‘WhXi ii: is 
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large enough, the shock layer appears, its thickness decreases and the band maximum 
concentration increases with increasing mass transfer coefficient. The shock velocity 
increases with increasing value of Kand the retention time decreases49,67. At very high 
values of K the retention time reaches a constant limit. In the case of a Langmuir 
equilibrium isotherm, we observe a characteristic variation of the retention time, which 
first increases then goes through a maximum and decreases when the mass transfer 
coefficient increases from zero to infinity. This kind of non-monotonic dependence is 
characteristic of a non-linear isotherm49*67. 

THEORETICAL ANALYSIS OF TWO-COMPONENT NON-LINEAR LIQUID CHROMATO- 

GRAPHY 

The ideal model for a two-component mixture is based on eqns. 19 and 20. The 
hodograph transform is the classical approach to solve these equations, which 
constitute the reducible quasi-linear partial differential equation system. This 
transform consists in replacing the functions Cl(x, b) and CZ(x, t) by the inverse 
functions x (C,, C,) and t (C,, C,). It turns out that the transformed system of partial 
differential equations in x and t is linear and can be discussed much more in depth. 
Thus, the use of the hodograph transform permits a clear discussion of the problem of 
the separation of a binary mixture. 

A theoretical analysis of multi-component adsorption chromatography has been 
made by Rhee and co-workers for isothermall and adiabatic columns6B. The use of 
the simple wave theorems and of the properties of discontinuities were reported. 

Two very important cases must be treated separately. 

Wide rectangular injection pulse 
It can be shown that when the width of the rectangular injection pulse is very 

large, so large that the plateau of this pulse has not been completely eroded when the 
band is eluted from the column, the solution of the system of eqns. 19 and 20 is 
a constant state followed by a simple wave. The theory of non-linear partial differential 
equations shows that, whenever there is a constant state region within the overlapping 
area, the neighborhood of such a region is a simple wave regionz5*@‘. The simple wave 
region is a very particular and important region, where there is a constant relationship 
between C1 and C,, independently of x, i.e., this relationship between the concentra- 
tions of the two components remains the same during their migration all along the 
column. 

The constant state corresponds to the elution of the plateau, the simple wave to 
the elution of both the front and the rear of the band system, adjacent to the constant 
plateau . 6g In the Langmuir isotherm case, the hodograph plane contains only two 
straight lines, which intersect at the point corresponding to the constant plateau, i.e., to 
the composition (C,“, C,“) of the injection pulse. These two lines are characteristic lines 
in the hodograph plane. 

The solution Cilx, I), CZ(X, t) can be represented by a graph in an (x, t) plane. 
Similarly, the transform solution, x (Cl, CZ), t (Ci, C,), can be represented by a graph 
in a (CI, Cd plane. The transform of the solution&om the X, tplane to the Cr, C, plane 
can be cmdered as a mapping. This mapping is degenerated in both the constant 
state case and the simple wave case. This means that the mapping results in a decrease 
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of the number of dimensions of the corresponding space, e.g., from 2 to 1, in which case 
the plane is mapped into a few lines. Mathematically, the simple wave is defined just by 
this condition. ObviouSly, we have then C1 = f(C,). The mapping may also result in 
a decrease of the number of dimensions of the space from 2 to 0, and the entire plane is 
mapped into a few points, which correspond to the constant state. In both cases 

J _ @Cl, G) -I I 3(x, t) = 
o 

(52) 

Figs. 14 show simulated separations, using the computer program described 
previously . 61 This program permits the integration of eqns. 19 and 20, with an 
apparent diffusion term, of numerical origin, which simulates the finite efficiency of an 
actual column7*. Competitive Langmuir isotherms have been used. The mapping of 
the elution profiles is shown in Figs. lb--lb. If the injection width is such that the 
elution profile still has a plateau, as discussed above, this plateau is a constant state for 
the solution. As shown in Figs. l-4, the characteristic lines in the C1, Cz plane are two 
straight lines. That with a positive slopes corresponds to the rear part of the elution 
band in the overlapping region, whereas that with a negative slope corresponds to,the 
front part. It is most important to note that these two straight lines result from the 
mapping of the whole bandprofile of each component, at allpositiotis inside the column. 
Fig. 4 shows the band profiles at half length and at the end of a 5 cm long column. 

It is remarkable that changes in the value of the dispersion coefficient or the mass 
transfer coefficient do not change the slope of the characteristic straight lines. They 
merely affect the range of concentrations during which the characteristic curve is 
superimposed on these straight lines. The effect is strong on the front part of the ehition 
profile and much smaller on the rear part of the elution profile (see Figs. 1 and 2). 
When the dispersion coefficient increases and/or the mass transfer coefficient 
decreases, the range where the simple wave solution in valid decreases (see Fig. 2). 

Narrow rectangular injection pulse 
In most practical cases, the injection pulse is narrow and the profile of the elution 

band does not have a constant state. Then, the solutions for the two sides of the elution 
band cannot be simple waves. The determinant of the Jacobian of the system (see 
eqn. 52) is no longer zero. Hence the mapping from the x, t plane to the C1, C2 plane is 
not a degenerate mapping. This means that the whole x, t plane is mapped on to the 
whole C1, Cz plane. 

In the case of a pulse injection, although the solutions are not simple waves, the 
following relationship still holds between the concentrations of the two components3*: 

De Dqz -=- 
DC1 DC2 

where 

(53) 

(54) 
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Fig. 1. Numerical simulation of the elution of a wide pulse of a binary mixture and hodograph transform of 
the chromatogram. Influence of the mass transfer coeffkient. Column length, 5 cm; flow velocity, 0.25 cm/s; 
composition of the mixture, I: 1; concentration of each compound, I A$ injection duration. I5 s. Langmuir 
isotherm coefficients: a1 = 8, a, = 7, bl = I, bz = 2. Diffusion coeffkient: D = I IV’ cm’/s. (a) Two 
chromatograms are superimposed, corresponding to the injection of the same amount of the same mixture, 
with two different values ofthe mass transfer coefficient. Lines I and 2, first component; lines 3 and 4, second 
component. Lines 1 and 3, K = 25; lines 2 and 4, K = 5. (b) Hodograph transforms of the chromatograms in 
(a). Line 1 = transform of the front part of chromatograms 1 and 3, until the plateau is reached; line 
2 = transform ofthe front part ofchromatograms 2 and 4, until the plateau is reached; line 3 = transform of 
the rear parts of the two chromatograms. 
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Fig. 2. Numerical simulation of the elution of a wide pulse of a binary mixture and hodograph transform of 
the chromatogram. Influence of the diffusion coefficient. Same parameters as in Fig. 1, except mass transfer 
coefficient of both components K = 25 and variable diffusion coefficient. (al The two chromatograms 

correspond to D = 1 10e5 (lines 1 and 3) and to D = I lo-) cm”/s (lines 2 and 4). (b) Hodograph 
transforms of the chromatograms in (a). Same as for Fig. lb. 
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Fig. 3. Numerical simulation of the elutian of a narrow pulse of a binary mixture and hodograph transform 
of the chromatogram. Influence of the diffusion coefficient. (a) Same parameters as for Fig. 2a. except 
injection duration 0.1 s. Lines I and 3, diffusion coefftcient D = 1 IO-’ cm’/s; lines 2 and 4, D = 1 f 
10m3 cmz/s. (b) Hodograph transforms of the chromatograms in (a). Line 1 = profiles I and 3; 
line 2 = nroftles 2 and 4. 
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Fig. 4. Numerical simulation of the elution of a wide pulse of a binary mixture and hodograph transform of 
the chromatogram. Influence of column length. (a) Chromatograms for columns, of different lengths: (I) 
2.5 cm; (2) 5 cm. Other conditions as in Fig. 1. (b) Hodograph transforms of the chromatograms in Fig. 3a. 
Line 1 = chromatogram 1; line 2 = chromatogram 2. 
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and 

Dq2 aq2 de, aq2 
DC2 

-=dC+dC’E 
2 2 i 

(55) 

If q1 = ql(C1, C,) and q2 = q2(C1, C,) are known, we can derive from eqns. 53-55 the 
ordinary differential equation for dC2/dC1, and the solutions are two families of 
curves. If the isotherms, q1 and q2, are Langmuir isotherms, the differential equation is 
a Clairaut equation and the characteristic lines are two families of straight lines. Thus, 
in the case of a pulse injection, more than two different values of dC2/d,C1 exist. 

Although in the area where the two bands overlap the concentration profiles of 
the two bands are such that in each slice the velocities associated with each of the two 
concentrations are equal (u,.~ = u,,~), this cannot be true at the edges. In the case of 
a pulse, the area of the profile must remain constant, so dilution occurs while the band 
spreads. This causes the progressive redistribution of the equal velocity pairs 
associated with two concentrations and causes the separation to proceed. 

Fig. 3a and b show the elution bands simulated with our program, under 
conditions where the width of the injected rectang,ular pulse is narrow. There is no 
plateau on the elution bands. The corresponding plot in the hodograph plane (C,, C,), 

dG shows that the derivative dC is not constant in this case. It changes with the position 
1 x 

of the zone in the column. The degeneracy is removed. 
The influence of the dispersion coefficient and the mass transfer coefficient on 

the lines in the (C,, C,) plane which correspond to a constant value of x is illustrated in 
Fig. 3. The hodograph transform is now a curve. The lower the column efficiency, the 
further it is from the coordinate axes. 

ERRORS MADE IN THE COMPUTER SIMULATIONS OF THE IDEAL MODEL 

Various attempts have been made to generate computer programs permitting the 
simulation of the behavior of a chromatographic column with various initial and 
boundary conditions, corresponding to overloaded elution’, volume overloaded 
elution36, frontal analysis 23, displacement7’ and system peaks72, for a pure com- 
pound or a binary mixture 73 In the following discussion, only the case of a pure . 
compound is considered. The investigation of the separation of a binary mixture 
introduces an additional complexity which is discussed elsewhere74. 

The main procedures investigated correspond to the integration of eqn. 17 (ideal 
model) or eqns. 4 and 5 (kinetic model). The results are briefly summarized here. In 
both cases, the principle of the integration is to replace the continuous (x, t) plane by 
a grid, (klz, IT), and to calculate progressively the value of the concentration at each 
point of the grid, starting from those which are given by the initial and boundary 
conditions. In practice, profiles along the column [i.e., C,(X) at successive values of Et] 
are calculated and for each profile the couple Z, C,(L) is stored. It is the elution profile. 
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The characteristic method 
Eqn. 1X is replaced by the following finite difference equation: 

Obviously, a solution of eqn. 56 is not an exact solution of eqn. 18, unless h and t are 
infinitely small, which for practical reasons is impossible. The error introduced at each 
stage can be calculated by replacing each concentration in eqn. 56 by a three-term 
expansion around Cjn7*. The result is 

(57) 

where u, = uo/( 1 + F - (see eqn. 17). Eqn. 17 can be rearranged into i:) 

ac - = -_u -1 .E 
ax z at 

which gives 

d2C -= -2 a2c 
ax2 uz at2 

Eqn. 57 becomes 

(58) 

(59) 

or 

1 d2C PI -- = ( > 21.4;~ a2 j 

o 

or, replacing u, by its value, 

(61) 

(62) 
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If a = zu,/h = 2, and hu,,/2 = D,, where D, is the artificial dispersion coefficient, we 
have 

uo g + [I + Fy(C)] g = D, 2 (63) 

Eqn. 63 indicates that the finite difference eqn. 56 is in fact equivalent to the partial 
differential eqn. 63. It has been shown by Haarhof and Van der Linde75 that eqn. 63 is 
equivalent to eqns. 4 and 5 (for one compound), when the mass transfer kinetics are 
fast, and D, is related to the column efficiency (D, = HL/2t,). This results assume that 
the errors which have an order higher than o(h + z), i.e., those resulting from the 
fourth-term expansions in the concentrations in eqn. 56, are neglected. 

If we chose the integration increment so that h = H, we have 

= DL (64) 

where DL is the axial dispersion coefficient for the actual column. Thus, the numerical 
results derived from eqn. 56 actually contain a dispersion term, and correspond to the 
behavior of an actual column. They give the solution of a semi-ideal model. 

The previous derivation assumes that U, is constant, which is valid only with 
a linear isotherm. As in this instance the band profile is Gaussian, this result may seem 
of limited interest. If U, is not constant, we write 

PC 
a-’ 
i > % ac 1 d2C __=------------.__ _ ___ 

dt2 dt ax 0 24, atax 
(65) 

The difference eqn. 56 is now equivalent to 

d2C 
= D;-- T-~.u~F I 

ax2 
.fif 2 (;;)I(1 + F,g) 

When iJ2f/X2 tends towards zero (in which case the isotherm becomes linear), or when 
z + 0, the analysis is the same as that made in the case when U, is constant. We must 
note, however, that this result leaves little freedom to chose the integration increments, 
since we must keep the Courant number larger than 1, and preferably equal to 2 (see 
above). Hence, keeping z small requires also that h be kept small, giving long 
computing times and a high column efficiency, which is not always the result desired. 

The Lax- Wendroff scheme 
This is a second-order method, which introduces an axial dispersion term and 

eliminates the artificial dispersion term, which depends strongly on the space and time 
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integration increments. Accordingly, this method is more suitable for the calculation 
of the numerical solutions of multi-component, semi-ideal model, when the range of 
retention investigated is large. 

The system of partial differential eqns. 4 and 5 is replaced by the following finite 
difference equations: 

- ($ + ;)G+l - 2cjn + cjn_1) = 0 

and 

C$ ’ - C:j 

T 
= KIf(Cj") - C,lj] 

(67) 

The major characteristic of eqn. 67 are the third term, which is a centered difference 
term instead of (Cy - Cy_,)/h, and the introduction in the fourth term of 
a compensating factor, &/2h2, which cancels out the effect of the artificial dispersion 
introduced by the integration increments in the characteristic method. 

Accordingly, the accuracy of the numerical calculations performed according to 
eqns. 67 and 68 is much better than that of the calculations made with eqn. 56. The 
errors made \ ith the Lax-Wendroff scheme are of the order of o (AZ + 2’) in the linear 
case. The results are nearly totally independent of the values chosen for the time, z, and 
the space, h, increments. In the non-linear case, however, additional errors are 
introduced, which are proportional to 2, but remain nearly independent of the space 
increment. 
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